

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

CI/CD at scale: Best practices with
AWS DevOps services

Loh Yiang Meng

Solutions Architect

Amazon Web Services

Agenda

• What is DevOps?

• Pipeline automation

• Safe deployments

• Repeatable infrastructure changes

• CI/CD at Electrify Asia

• Demo

What is DevOps?

DevOps =

What is DevOps?

DevOps = Culture Practices Tools+ +

What is DevOps?

DevOps = Culture Practices Tools+ +

What is DevOps?

DevOps = Culture Practices+ Tools+

What is DevOps?

DevOps = Culture Practices Tools+ +

What is DevOps at scale?

Source Build Beta

Pre-production Production

Artifacts

App code Unit tests

What is DevOps at scale?

Source Build

Pre-production

Artifacts

App code

Alpha Beta Gamma

Automated

tests

Automated

integration

tests

Automated

load/perf

tests

Automated

integration

tests

Automated

synthetic

tests

API smoke

tests
Automated

browser

tests

Production

What is DevOps at scale?

Source Build

Pre-production

Artifacts

App code

Alpha Beta Gamma

Automated

tests

Automated

integration

tests

Automated

load/perf

tests

Automated

integration

tests

Automated

synthetic

tests

API smoke

tests
Automated

browser

tests

Production

What is DevOps at scale?

Source Build

Pre-production

Artifacts

Alpha Beta Gamma

Automated

tests

Automated

integration

tests

Automated

load/perf

tests

Automated

integration

tests

Automated

synthetic

tests

API smoke

tests
Automated

browser

tests

Production

App code

Infrastructure

as code

Configuration

Base image

What is DevOps at scale?

Source Build

Pre-production Production

Artifacts

App code

Infrastructure

as code

Configuration

Base image

Alpha Beta Gamma

Automated

tests

Automated

integration

tests

Automated

load/perf

tests

Automated

integration

tests

Automated

synthetic

tests

API smoke

tests
Automated

browser

tests

Best practices for CI/CD

Pipeline
automation

Best practices for CI/CD

Pipeline
automation

Release process stages

Source Build Test Production

• Integration tests

with other systems

• Load testing

• UI tests

• Security testing

• Check in source

code such, as

.java files

• Peer review new

code

• Compile code

• Unit tests

• Style checkers

• Create container

images and

deployment

packages

• Deploy to

production

environments

• Monitor code in

production in order

to quickly detect

errors

AWS code services

Source Build Test Production

AWS CodeDeployAWS CodeBuild

+ third-party

tooling

AWS CodeBuildAWS CodeCommit

AWS CodePipeline

AWS CodePipeline

• Managed continuous delivery service

• Model and visualize release process

• Automated pipeline trigger on code
change

• Integrates with third-party tools

AWS CodePipeline: Supported sources

Via object/folder

Amazon S3

Via Docker image

Amazon ECR

Via branch

AWS CodeCommit

GitHub

Bitbucket

AWS CodePipeline: Supported triggers
Automatically kick off release

Amazon EventBridge

• Scheduled (nightly release)

• AWS Health events (AWS

Fargate platform retirement)

Available in Amazon
EventBridge console, API, SDK,
CLI, and AWS CloudFormation

Webhooks

• Docker Hub

• Quay

• Artifactory

Available in AWS CodePipeline
API, SDK, CLI, and AWS
CloudFormation

AWS CodePipeline: Supported deployment targets

Containers

AWS CodeDeploy

Amazon ECS

AWS Fargate

Serverless

AWS CodeDeploy

AWS CloudFormation
(AWS SAM)

AWS Lambda

Amazon EC2

AWS CodeDeploy

AWS Elastic Beanstalk

AWS OpsWorks Stacks

Continuous integration goals

Continuous integration

1. Automatically kick off a new build when new code is checked in

2. Build and test code in a consistent, repeatable environment

3. Continually have an artifact ready for deployment

4. Continually close feedback loop when build fails

Source Build Test Production

AWS CodeBuild

• Fully managed build service

• Isolated build containers for
consistent, immutable environment

• Docker and AWS CLI out of box

• Ability to customize build
environment

AWS CodeBuild
version: 0.2

env:
variables:
JAVA_HOME: "/usr/lib/jvm/java-8-openjdk-amd64"

phases:
install:
runtime-versions:
java: corretto8

build:
commands:
- echo Build started on `date`
- mvn install

post_build:
commands:
- echo Test started on `date`
- mvn surefire-report:report

reports:
SurefireReports:
files:
- '**/*'

base-directory: 'target/surefire-reports’
artifacts:
type: zip
files:
- target/messageUtil-1.0.jar

discard-paths: yes

Create and store build artifacts in

Amazon S3

Variables to be used by phases of build

Execute unit tests

Execute build command

AWS CodeBuild
version: 0.2

env:
variables:
JAVA_HOME: "/usr/lib/jvm/java-8-openjdk-amd64"

phases:
install:
runtime-versions:
java: corretto8

build:
commands:
- echo Build started on `date`
- mvn install

post_build:
commands:
- echo Test started on `date`
- mvn surefire-report:report

reports:
SurefireReports:
files:
- '**/*'

base-directory: 'target/surefire-reports’
artifacts:
type: zip
files:
- target/messageUtil-1.0.jar

discard-paths: yes

v0.1 – each build cmd in separate shell

v0.2 – each build cmd in same shell

Variables to be used by phases of build

Execute unit tests

Execute build command

Create and store build artifacts in

Amazon S3

AWS CodeBuild
version: 0.2

env:
variables:
JAVA_HOME: "/usr/lib/jvm/java-8-openjdk-amd64"

phases:
install:
runtime-versions:
java: corretto8

build:
commands:
- echo Build started on `date`
- mvn install

post_build:
commands:
- echo Test started on `date`
- mvn surefire-report:report

reports:
SurefireReports:
files:
- '**/*'

base-directory: 'target/surefire-reports’
artifacts:
type: zip
files:
- target/messageUtil-1.0.jar

discard-paths: yes

v0.1 – each build cmd in separate shell

v0.2 – each build cmd in same shell

Variables to be used by phases of build

Reports output location

Execute unit tests

Execute build command

Create and store build artifacts in

Amazon S3

AWS CodeBuild

See breakdown of

individual unit tests,

status of the tests,

duration, and messages

from the tests

Best practices for CI/CD

Pipeline
automation

Continuous deployment goals

Continuous deployment

1. Automatically deploy new changes to staging environments for testing

2. Deploy to production safely without impacting customers

3. Deliver to customers faster: Increase deployment frequency and reduce

change lead time and change failure rate

Source Build Test Production

AWS CodeDeploy

• Automates code deployments

• Handles complexity of application
updates

• Avoid downtime during deployment

• Roll back automatically upon failure

• Limit “blast radius” with traffic control

AWS CodeDeploy: Amazon EC2 deployments
version: 0.0
os: linux
files:
- source: /
destination: /var/www/html

permissions:
- object: /var/www/html
pattern: “*.html”
owner: root
group: root
mode: 755

hooks:
ApplicationStop:
- location: scripts/deregister_from_elb.sh

BeforeInstall:
- location: scripts/install_dependencies.sh

ApplicationStart:
- location: scripts/start_httpd.sh

ValidateService:
- location: scripts/test_site.sh
- location: scripts/register_with_elb.sh

• Remove/add instance to Elastic

Load Balancing

• Install dependency packages

• Start web server

• Confirm successful deploy

• Send application files to one

directory and configuration files

to another

• Set specific permissions on

specific directories & files

v2 v2 v2 v2 v2 v2

One at a time

Half at a time

All at once

v2 v2 v2 v1 v1 v1

v2 v1 v1 v1 v1 v1 Agent

Dev deployment group

Or
Prod deployment group

Choose deployment speed and group

Agent

Agent Agent Agent

Agent Agent Agent

CodeDeploy: Amazon ECS blue/green deployment

100%
production

traffic

CodeDeploy: Amazon ECS blue/green deployment

Blue target
group

Blue tasks:
v1 code

100%
production

traffic

CodeDeploy: Amazon ECS blue/green deployment

Green
target
group

Blue target
group

Blue tasks:
v1 code

100%
production

traffic

100%
test

traffic

CodeDeploy: Amazon ECS blue/green deployment

Blue target
group

Green tasks:
v2 code

Provision green tasks

100%
test

traffic

Blue tasks:
v1 code

100%
production

traffic

Green
target
group

CodeDeploy: Amazon ECS blue/green deployment

Green
target
group

Green tasks:
v2 code

Shift test traffic to green; run validation tests against test endpoint

Blue target
group

Blue tasks:
v1 code

100%
production

traffic

100%
test

traffic

CodeDeploy: Amazon ECS blue/green deployment

Green
target
group

Green tasks:
v2 code

Shift production traffic to green; roll back in case of alarm

Blue target
group

Blue tasks:
v1 code

100%
production

traffic

100%
test

traffic

CodeDeploy: Amazon ECS blue/green deployment

Green
target
group

Green tasks:
v2 code

Drain blue tasks

Blue target
group

100%
production

traffic

100%
test

traffic

AWS CodeDeploy: Lambda deployments

AWS CodeDeploy: Lambda deployments

AWS CodeDeploy: Lambda deployments

AWS CodeDeploy: Lambda deployments

Best practices for CI/CD

Pipeline
automation

What is DevOps at scale?

Source Build

Pre-production Production

Artifacts

App code

Infrastructure

as code

Configuration

Base image

Alpha Beta Gamma

Automated

tests

Automated

integration

tests

Automated

load/perf

tests

Automated

integration

tests

Automated

synthetic

tests

API smoke

tests
Automated

browser

tests

Infrastructure as code goals

Infrastructure as code

1. Make infrastructure changes repeatable and predictable

2. Release infrastructure changes using the same tools as code changes

3. Replicate production environment in a staging environment to enable

continuous testing

Source Build Test Production

AWS Cloud Development Kit (AWS CDK)

• Open-source framework to define cloud
infrastructure in Typescript, Python, Java, and
.NET

• Provisions resources with AWS CloudFormation

• Supports all AWS CloudFormation resource
types

• Provides library of higher-level resource types
that have AWS best practices built in by default

import ec2 = require('@aws-cdk/aws-ec2');
import ecs = require('@aws-cdk/aws-ecs');
import cdk = require('@aws-cdk/cdk');

class BonjourFargate extends cdk.Stack {
constructor(parent: cdk.App, name: string, props?: cdk.StackProps) {

super(parent, name, props);

const vpc = new ec2.VpcNetwork(this, 'MyVpc', { maxAZs: 2 });
const cluster = new ecs.Cluster(this, 'Cluster', { vpc });

new ecs.LoadBalancedFargateService(
this, "FargateService", {

cluster,
image: ecs.DockerHub.image("amazon/amazon-ecs-sample"),

});
}

}

const app = new cdk.App();
new BonjourFargate(app, 'Bonjour');
app.run();

AWS CDK template

import ec2 = require('@aws-cdk/aws-ec2');
import ecs = require('@aws-cdk/aws-ecs');
import cdk = require('@aws-cdk/cdk');

class BonjourFargate extends cdk.Stack {
constructor(parent: cdk.App, name: string, props?: cdk.StackProps) {

super(parent, name, props);

const vpc = new ec2.VpcNetwork(this, 'MyVpc', { maxAZs: 2 });
const cluster = new ecs.Cluster(this, 'Cluster', { vpc });

new ecs.LoadBalancedFargateService(
this, "FargateService", {

cluster,
image: ecs.DockerHub.image("amazon/amazon-ecs-sample"),

});
}

}

const app = new cdk.App();
new BonjourFargate(app, 'Bonjour');
app.run();

AWS CDK template

import ec2 = require('@aws-cdk/aws-ec2');
import ecs = require('@aws-cdk/aws-ecs');
import cdk = require('@aws-cdk/cdk');

class BonjourFargate extends cdk.Stack {
constructor(parent: cdk.App, name: string, props?: cdk.StackProps) {

super(parent, name, props);

const vpc = new ec2.VpcNetwork(this, 'MyVpc', { maxAZs: 2 });
const cluster = new ecs.Cluster(this, 'Cluster', { vpc });

new ecs.LoadBalancedFargateService(
this, "FargateService", {

cluster,
image: ecs.DockerHub.image("amazon/amazon-ecs-sample"),

});
}

}

const app = new cdk.App();
new BonjourFargate(app, 'Bonjour');
app.run();

AWS CDK template

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Electrify Asia

• Energy technology company

• Build sustainable energy ecosystems
through development of transactive
energy platforms

• Democratized access to clean energy
across Asia-Pacific

Challenges we had

• Lacking a standard CI/CD platform

• More manual human interact workload for deployments

• Highly vulnerable security issues and trouble with
keeping the secrets

• Trouble managing the infrastructure

• Hard to isolate the bottlenecks of the
application/services, so there is no proper observability

Our AWS Stack

Amazon

EC2
Amazon

EKS
Amazon

ECR
Lambda Amazon

EBS

Amazon

EFS

Amazon

S3

Amazon

S3

Glacier

AWS

Backup

Amazon

Aurora

Amazon

ElastiCache
Amazon

Redshift

Amazon

DynamoDB

AWS

CodePipeline
Amazon

Kinesis
Amazon

QuickSight
AWS

Glue
Amazon

SNS
Amazon

SES
Amazon

Alexa

AWS

Certificate

Manager

AWS

WAF
IAM AWS

Secrets

Manager

AWS

KMS
AWS

Trusted

Advisor

AWS

CloudTrail

AWS

Organizations

AWS

CloudFormation
AWS

Systems

Manager

Amazon

CloudWatch

AWS

Auto

Scaling

AWS

CodeBuild

AWS

CodeCommit

AWS

CodeDeploy

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

“We know that we have to deploy things
faster and break things over and over
again. To make that process streamlined,
we came up with this solution.”

DevOps pipeline
• Saved time and costs

• Everything is
automated

• Used Secrets Manager
to store the secure
configs

• Container Insights
and CloudWatch
provided
observability

AWS Cloud

CodePipeline

Amazon

ECR

Lambda

CodeBuild

CodeCommit

CodeDeploy

Amazon

EKS
Container

Secrets

Manager

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

“… and we made it more interesting by
integrating Alexa with AWS
CodePipeline.”

DevOps pipeline v2
AWS Cloud

Lambda

Secrets

Manager
Container

Alexa

skill

Lambda function
Alexa to trigger

the deployments
quickly and easily

Amazon

Echo

CodeCommit

CodeBuild

CodeDeploy

CodePipeline

Amazon

EKS

Amazon

ECR

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Learn to build modern applications on AWS

Enable rapid innovation by developing your skills in designing,
building, and managing modern applications

Resources created by the experts at AWS to help you build and validate developer skills

Validate expertise with the AWS Certified DevOps—
Professional or AWS Certified Developer—Associate exams

Learn to modernize your applications with free digital training and
classroom offerings, including Architecting on AWS, Developing on
AWS, and DevOps Engineering on AWS

Visit the developer learning path at aws.amazon.com/training/path-developing

Thank you!

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Loh Yiang Meng

